загрузка...

4.1. Функциональная и стохастическая зависимости

Принципиальная идея, с которой сталкивается ис-следователь социально-экономических процессов и явлений, - это понимание природы взаимосвязей между экономическими переменными. Формирующийся на рынке спрос на определенный товар рассматривается как функция цены, доходность активов зависит от степени риска вложений, потребительские расходы могут быть функцией от доходов.

В процессе статистического анализа и прогнозирования социально-экономических явлений необходимо количественно описать самые существенные взаимосвязи. Для достоверного отражения сущности и характера явле-ний и процессов следует выявлять причинно-следственные отношения. Причинная связь характеризуется временной последовательностью причины и следствия: причина всегда предшествует следствию. Однако для корректного понимания следует исключать совпадения событий, не имеющих причинной взаимосвязи.

Многие социально-экономические явления представляют результат одновременно и совокупно действующих причин. В таких случаях отделяются главные причины от второстепенных, несущественных.

Между явлениями различают два вида зависимостей: функциональную, или жестко детерминированную, и статистическую, или стохастически детерминированную. При функциональной зависимости каждому значению независимой переменной х однозначно соответствует вполне определенное значение зависимой переменной у. Эту зависимость можно описать в виде равенства у = f(x) . Приме- ром такой зависимости могут быть законы механики, справедливые для каждой отдельно взятой единицы совокупности без случайных отклонений.

Статистическая, или стохастическая зависимость, проявляется только в массовых явлениях, при большом числе единиц совокупности. При стохастической за-висимости для заданных значений независимой переменной х можно указать ряд значений у, случайно рассеянных в интервале. Каждому фиксированному значению аргумента соответствует определенное статистическое распределение значений функции. Это связано с тем, что зависимая переменная, кроме выделенной переменной х, подвержена влиянию также других неконтролируемых или неучтенных факторов, а также с тем, что накладываются ошибки измерения.

( 2, с. 12). Поскольку значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а только указаны с определенной вероятностью. Появляющиеся значения зависимой переменной являются реализациями случайной величины.

Односторонняя стохастическая зависимость одной случайной переменной от другой или нескольких других случайных переменных рассматривается как регрессия. Функция, при помощи которой выражается односторонняя стохастическая зависимость, называется функцией регрессии или просто регрессией.

Существует различие между функциональной зависимостью и регрессией. Кроме того, что переменная х при функциональной зависимости^ =f(x) полностью определяет значение функции^, функция обратима, т.е. существует обратная функция х = f(у). Функция регрессии таким свойством не обладает. Только в предельном случае, когда стохастическая зависимость переходит в функциональную зависимость, из одного уравнения регрессии можно перейти в другое.

Формализация вида уравнения регрессии неадекватна целям, связанным с измерениями в экономике и с анализом тех или иных форм зависимостей между пере-менными. Решение подобных задач становится возможным в результате введения в экономические соотношения стохастического члена:

При изучении зависимостей следует иметь в виду, что функция регрессии только формально устанавливает соответствие между переменными, в то время как они могут не состоять в причинно-следственных отношениях. В этом случае могут возникнуть ложные регрессии вследствие случайных совпадений в вариациях переменных, которые не имеют содержательного смысла. Поэтому обязательным этапом перед подбором уравнения регрессии является качественный анализ зависимости между независимой переменной х и зависимой переменной у, основанный на предварительных гипотезах.

<< | >>
Источник: Антохонова И.В.. Методы прогнозирования социально-экономических процессов. 2004

Еще по теме 4.1. Функциональная и стохастическая зависимости:

  1. 2.2.1. Функциональные зависимости и ключи
  2. 12.1. Функциональная зависимость между прибылью, объемом продаж и себестоимостью
  3. МОДЕЛЬ СТОХАСТИЧЕСКАЯ ФАКТОРНАЯ
  4. МОДЕЛЬ СТОХАСТИЧЕСКАЯ ФАКТОРНАЯ
  5. СТОХАСТИЧЕСКИЕ ЦИКЛЫ В УСЛОВИЯХ МАЛОПОДВИЖНЫХ ЦЕН
  6. Стохастические модели управления запасами
  7. СТОХАСТИЧЕСКИЕ ЦИКЛЫ: ТЕОРИЯ РЕАЛЬНОГО ДЕЛОВОГО ЦИКЛА
  8. СВЯЗЬ СТОХАСТИЧЕСКАЯ (ВЕРОЯТНОСТНАЯ)
  9. Понятие о параметрическом и стохастическом программировании
  10. СВЯЗЬ СТОХАСТИЧЕСКАЯ (ВЕРОЯТНОСТНАЯ)
  11. ЧАСТЬ 2. ОСНОВЫ СТОХАСТИЧЕСКОЙ МАТЕМАТИКИ
  12. Тема 5. Методы стохастического факторного анализа
  13. Глава 14. СТОХАСТИЧЕСКИЕ ЦИКЛЫ В УСЛОВИЯХ МАЛОПОДВИЖНЫХ ЦЕН