2.4.Формализованные методы прогнозирования

Формализованные методы делятся по общему принципу действия на четыре группы: экстраполяционные (статистические), системно-структурные, ассоциативные и методы опережающей информации.

В практике прогнозирования экономических процессов преобладающими, по крайней мере до последнего времени, являются статистические методы. Это вызвано, главным образом, тем, что статистические методы опираются на аппарат анализа, развитие и практика применения которого имеют достаточно длительную историю. Процесс прогнозирования, опирающийся на статистические методы, распадается на два этапа.

Первый заключается в обобщении данных, собираемых за некоторый период времени, а также создании на основе этого обобщения модели процесса. Модель описывается в виде аналитически выраженной тенденции развития (экстраполяция тренда) или в виде функциональной зависимости от одного или нескольких факторов- аргументов {уравнения регрессии). Построение модели процесса для прогнозирования, какой бы вид она ни имела, обязательно включает выбор формы уравнения, описывающего динамику и взаимосвязь явлений, и оценивание его параметров с помощью того или иного метода.

Второй этап — сам прогноз. На этом этапе на основе найденных закономерностей определяется ожидаемое значение прогнозируемого показателя, величины или признака. Безусловно, полученные результаты не могут рас-сматриваться как нечто окончательное, так как при их оценке и использовании должны приниматься во внимание факторы, условия и ограничения, которые не участвовали в описании и построении модели. Их корректировка должна осуществляться в соответствии с ожидаемым изменением обстоятельств их формирования.

Необходимо также отметить, что в ряде случаев собственно статистическая обработка экономической информации вовсе не является прогнозом, однако фигурирует как важное звено в общей системе его разработки. Мировая практика обладает обширным материалом в области перспективного анализа, и уже сейчас очевидно, что успешность прогнозов, получаемых на основе статистических моделей, существенно зависит от анализа эмпирических данных, от того, насколько такой анализ сможет выявить и обобщить закономерности поведения изучаемых процессов во времени.

Одним из наиболее распространенных методов про-гнозирования является экстраполяция, т.е. продление на перспективу тенденций, наблюдавшихся в прошлом (более подробно метод экстраполяции изложен в следующей главе). Экстраполяция базируется на следующих допущениях (7, с.151):

1) развитие явления может быть с достаточ

ным основанием охарактеризовано плавной траекторией - трендом;? 2) общие условия, определяющие тенденцию

развития в прошлом, не претерпят существенных изменений в будущем.

Экстраполяцию можно представить в виде определения значения функции:

yt+l=f(yt\L), (2.1)

где уш - экстраполируемое значение уровня;

у* - уровень, принятый за базу экстраполяции;

L - период упреждения.

Простейшая экстраполяция может быть проведена на основе средних характеристик ряда: среднего уровня, среднего абсолютного прироста и среднего темпа роста.

Если средний уровень ряда не имеет тенденции к изменению или, если это изменение незначительно, то можно принять:

Уш = У ¦

Если средний абсолютный прирост сохраняется не-изменным, то динамика уровней будет соответствовать арифметической прогрессии:

yt+i=yt + Ayt

Если средний темп роста не имеет тенденцию к изменению, прогнозное значение можно рассчитать по формуле:

Уы=УУ, (2.2)

где т - средний темп роста;

у* - уровень, принятый за базу для экстраполяции.

В данном случае предполагается развитие по геометрической прогрессии или по экспоненте. Во всех случаях следует определять доверительный интервал, учиты-вающий неопределенность и погрешность используемых оценок.

Наиболее простым и известным является метод скользящих средних, осуществляющий механическое выравнивание временного ряда. Суть метода заключается в

33? замене фактических уровней ряда расчетными средними, в которых погашаются колебания. Метод подробно рассмот-

4

рен в курсе теории статистики .

Для целей краткосрочного прогнозирования также может использоваться метод экспоненциального сглаживания. Средний уровень ряда на момент t равен линейной комбинации фактического уровня для этого же момента yt и среднего уровня прошлых и текущего наблюдений.

Qt = ayt + (l-a)Qt^ (2.3)

где Qt - экспоненциальная средняя (сглаженное значение уровня ряда) на момент t;

а - коэффициент, характеризующий вес текущего наблюдения при расчете экспоненциальной средней (параметр сглаживания), 0<а< 1.

Если прогнозирование ведется на один шаг вперед, то прогнозное значение ум = Qt является точечной оценкой.

Экстраполяция тренда возможна, если найдена зависимость уровней ряда от фактора времени t, в этом случае зависимость имеет вид:

У г = ДО ¦ (2.4)

Виды кривых, основания выбора вида аналитической зависимости и расчет доверительного интервала рассмотрены в следующей главе.

Для многих стационарных процессов в экономике характерно наличие тесной связи между уровнями за предыдущие периоды или моменты и последующими уровнями. В таких случаях зависимость от времени проявляется через характеристики внутренней структуры процесса за прошлые периоды. Выразив в аналитической форме взаи- мосвязь уровней временного ряда, можно использовать полученную закономерность для прогнозирования.

Модель стационарного процесса, выражающая значение показателя yt в виде линейной комбинации конечного числа предшествующих значений этого показателя и аддитивной случайной составляющей, называется моделью авторегрессии.

yt = a + (pyt_x + st, (2.5)

где а - константа, (р - параметр уравнения, st - случайная компонента.

Рассмотренные выше методы, за исключением экстраполяции тренда, являются адаптивными, т.к. процесс их реализации заключается в вычислении последовательных во времени значений прогнозируемого показателя с учетом степени влияния предыдущих уровней.

Морфологический метод разработан известным швейцарским астрономом Ф. Цвикки, работавшим в обсерваториях в штате Калифорния до 1942 г. Три типа проблем, которые по его мнению морфологический анализ способен разрешить:

какое количество информации об ограниченном круге явлений может быть получено с помощью данного класса приемов?

какова полная цепочка следствий, вытекающих из определенной причины?

каковы все возможные методы и приемы решения данной конкретной проблемы?

Ответом на второй вопрос является построение дерева целей на основе теории графов. Ответ на третий вопрос дает изыскательское прогнозирование.

Преждевременная постановка вопроса о ценности наносит ущерб исследованию. Упорядочивание всех решений, в том числе тривиальных, позволяет уйти от стереотипов, структурирует мышление таким образом, что генери- руется новая информация, ускользающая от внимания при несистематической деятельности.

В морфологическом анализе систематически исследуются все комбинации при проведении качественных изменений основных параметров концепции и посредством этого выявляются возможности новых комбинаций.

Наиболее конструктивным из прикладных направлений системных исследований считается системный анализ. "Анализ системы в целом" ("total systems analyses") впервые был разработан корпорацией "РЭНД" в 1948 году для оптимизации сложных задач военного управления. Однако независимо от того, применяется термин «системный анализ» только к определению структуры целей и функций системы, к планированию, разработке основных направлений развития отрасли, предприятия, организации, или к исследованию системы в целом, включая и цели, и оргструк- туру, работы по системному анализу отличаются тем, что в них всегда предлагается методика проведения исследования, организации процесса принятия решения, делается попытка выделить этапы исследования или принятия решения и предложить подходы к выполнению этих этапов в конкретных условиях.

Кроме того, в этих работах всегда уделяется особое внимание работе с целями системы: их возникновению, формулированию, детализации (декомпозиции, структуризации), анализу и другим вопросам преобразования (целе- полагания). Некоторые авторы даже в определении системного анализа подчеркивают, что это методология исследования целенаправленных систем. При этом разработка методики и выбор методов и приемов выполнения ее этапов базируются на системных представлениях, на использовании закономерностей, классификаций и других результатов, полученных теорией систем.

К методам нормативного технологического прогнозирования относятся матричные подходы, используемые для проверки согласования с различными горизонтально действующими факторами. Двумерные матрицы дают быстрый метод оценки первоочередности того или иного из предполагаемых вариантов. Этому принципу соответствует распространенный в менеджменте метод SWOT анализа, т.е. учет слабых и сильных сторон объекта, угроз и преимуществ во внешней среде.

С точки зрения методики к матричным методам относятся методы и модели теории игр. Они применяются в прогнозировании социально-экономических процессов при анализе ситуаций, возникающих вследствие определенных отношений между исследуемой системой и другими противоположными системами. Примером является рассмотрение предприятия (одного игрока) и природы (другого игрока), т.е. реакции и поведения покупателей.

Другой пример связан с деятельностью предприятий и экономической политикой правительства. Распределение дохода является компромиссом между необходимостью централизации доходов и обеспечения экономической самостоятельности предприятий. Стратегия предприятия формируется с учетом суммарного выигрыша, который оно получает от остающейся у него доли дохода и от дополнительных возможностей, предоставляемых ему центром. Стратегия государства состоит в определении доли централизованных доходов, не подрывающих экономических возможностей развития предприятий и в то же время является достаточной для решения общегосударственных задач, в конечном счете имеющих значение и для самих предприятий (3, с. 188).

Основной задачей теории игр является разработка рекомендаций по выбору наиболее эффективных решений по управлению процессами в условиях действия неопределенных факторов. К неопределенным относят факторы, о которых исследователь не располагает никакой информацией, они имеют неизвестную природу.

Современный конкурентный мир характеризуется стратегической неопределенностью вследствие участия в нем множества сторон, имеющих собственные различные цели и недостаточно представляющих стратегии конкурентов. В стратегическом менеджменте конкурентная стратегия должна развиваться в направлении от конфликтных ситуаций к партнерству. При этом каждая сторона должна быть готова пойти на определенные потери и быть уверена, что ее конкурент также готов к потерям ( 4, с.318).

К методам статистического моделирования относятся уравнения регрессии, описывающие взаимосвязи временных рядов независимых признаков и результативных признаков. Прогнозные уровни рассчитываются посредством подстановки в уравнение регрессии прогнозных значений признаков-факторов, которые могут быть получены, например, на основе экстраполяции. Прогнозирование на основе регрессионных моделей может выполняться только после оценки значимости коэффициентов регрессии и проверки модели на адекватность. Вопросы применения регрессионного анализа для целей прогнозирования рассмотрены в главе 4.

Инструментом прогнозирования, учитывающим требования системного подхода к объекту и его количественным характеристикам, являются эконометрические модели. Областью их приложения являются макроэкономические процессы на уровне национальной экономики, ее секторов и отраслей, экономики территорий.

Эконометрические исследования берут свое начало от У.Петти, Дж.Граунта, А.Кетле и в этот список можно включить всех статистиков, внесших значительный вклад в изучение массовых экономических явлений посредством количественных измерений.

Развитию некоторых проблем эконометрического моделирования посвящены работы многих экономистов в области экономико-математического моделирования в 50- 80-е годы прошлого века.

Логика эконометрических монографий обращена прежде всего к различным приложениям, чем к решению задач, возникающих в теории. Так построены переведенные на русский язык монографии Г.Тейла и Э.Маленво , ставшие доступными широкому кругу читателей в 70-х годах прошлого века и сыгравшие большую роль в решении прикладных задач.

Систематическому изложению методов теоретической эконометрики посвящена монография Дж.Джонстона "Эконометрические методы" , изданная в 1980 году. Книга содержит многочисленные примеры и результаты, полученные вплоть до конца 70-х годов, после которых начался качественно новый этап развития рыночной экономики.

В течение последних 10 лет эконометрика вошла в учебные планы экономических специальностей вузов России, и также подготовлена необходимая учебная и методическая литература ведущими отечественными статистиками. Основными среди них являются учебники и учебные пособия, разработанные С.А. Айвазяном, B.C. Мхитаряном ( 1 ) и ИИ. Елисеевой ( 6 ).

Функционально-иерархическое моделирование представляет согласование отдаленной цели с действиями (функциями), которые необходимо предпринять для ее достижения в настоящем и будущем времени. Впервые идея построения графа по принципу дерева целей была предложена группой исследователей в связи с проблемами принятия решений в промышленности (7). Деревья целей с количественными показателями используются в качестве вспомогательного средства при принятии решений и носят в этом случае название деревьев решений.

Первое крупное применение методики дерева целей к количественным расчетам в области принятия решений было осуществлено отделом военных и космических наук компании "Хониуэлл". Схема ПАТТЕРН, первоначально использованная для проблем аэронавтики и космоса, была превращена в универсальную схему, охватывающую все военные и космические сферы деятельности.

<< | >>
Источник: Антохонова И.В.. Методы прогнозирования социально-экономических процессов. 2004

Еще по теме 2.4.Формализованные методы прогнозирования:

  1. 2.2. Классификация методов прогнозирования
  2. 2. Классификация методов прогнозирования
  3. Антохонова И.В.. Методы прогнозирования социально-экономических процессов, 2004
  4. 2.1. Понятие метода прогнозирования
  5. Методы прогнозирования.
  6. 2.3. Интуитивные методы прогнозирования.
  7. 1. Теоретико-методологические основы методов социально- экономического прогнозирования
  8. 2.6. Методы планирования (прогнозирования) прибыли
  9. Часть IV. МЕТОДЫ ПРОГНОЗИРОВАНИЯ 9.
  10. Глава 2 МЕТОДЫ ПРОГНОЗИРОВАНИЯ И ИХ КЛАССИФИКАЦИЯ
  11. Глава 6 ЭКСПЕРТНЫЕ МЕТОДЫ ПРОГНОЗИРОВАНИЯ
  12. Тема 3. Методы социального прогнозирования
  13. Тема 6ФИНАНСОВОЕ ПЛАНИРОВАНИЕ И МЕТОДЫ ПРОГНОЗИРОВАНИЯ
  14. Приложение 4А ФОРМАЛИЗОВАННАЯ МОДЕЛЬ ПОТРЕБЛЕНИЯ И СБЕРЕЖЕНИЙ
  15. 4.2.4. Формализованная запись аксиом
  16. 16.6. Метод «затраты-выпуск» и его использование для анализа и прогнозирования структурных взаимосвязей в экономике
  17. 48. ПРОГНОЗИРОВАНИЕ ОБЪЕМА РЕАЛИзАЦИИ И ФИНАНСОВОЕ ПРОГНОзИРОВАНИЕ